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Abstract 

The increase in the data acquisition and processing needs of High Energy Physics experiments has made it 

even more essential to use FPGAs to meet those needs. However harnessing the capabilities of the FPGAs 

has been hard for anyone but expert FPGA developers. The arrival of OpenCL, and the two major FPGA 

vendors supporting it, offers an easy software-based approach to taking advantage of FPGAs in applications 

such as High Energy Physics. OpenCL is a language for using heterogeneous architectures in order to 

accelerate applications. With OpenCL it has become easier to port code between GPUs, FPGAs & other 

accelerators and using FPGAs has become as easy as using GPUs. A comparison of their performance is 

made. OpenCL has the potential for a massive gain in productivity and ease of use enabling non FPGA 

experts to design, debug and maintain the code. Also, FPGA power consumption is much lower than other 

implementations. However, FPGAs are capable of far more than acceleration, hence it is interesting to 

explore if OpenCL can be used to take advantage of FPGAs for more generic applications. To answer this 

question, especially in the context of High Energy Physics, a DAQ module was also tested for 

implementation with OpenCL on FPGAs
1
. The challenges on using OpenCL for a DAQ application and 

their solutions, together with the performance of the OpenCL based acceleration are discussed. Many of the 

design elements needed to realize a DAQ system in OpenCL already exists, mostly as FPGA vendor 

extensions, but a small number of elements were found to be missing. This paper describes one of the first 

attempts to explore the use of OpenCL for applications outside the acceleration workloads. 
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1. Introduction 

The proposed upgrade for the Large Hadron Collider LHCb experiment at CERN envisages a system of 500 

data sources, each generating data at 100 Gbps. The acquisition and processing of this is a challenge even 

for state-of-the-art FPGAs. This challenge has two parts, one is Data Acquisition (DAQ) and the other 

Algorithm Acceleration, the latter not necessarily immediately following the former. 

For the algorithm acceleration part, the Hough transform [1] was implemented in OpenCL. This is a method 

to identify patterns from points in 2D/3D space and can be used to identify particle tracks from hits in the 

VELO detector elements. Variations of this algorithm are also used for feature identification on the data 

from other detectors. This work explored the ease of use of implementing algorithm acceleration on 

OpenCL for FPGA. To enable comparison, the same algorithm was ported to Altera FPGA, Nvidia GPU as 

well as an Intel Xeon Phi. The results of the comparison are analyzed and a performance improvement for 

the FPGA has been presented. 

For the Data Acquisition, a Header Generator module was needed to packetize the streaming data coming in 

from the front-end electronics of the detectors, for easy access and processing by the servers. This 

necessitates FPGA architectures that not only handle the data generated by the experiment in real-time, but 

also dynamically adapt to potential inadequacies of other components, such as the network and PCs, while 

ensuring system stability and overall data integrity. Since the data source has no flow control, this module 

needs to modify the stream data by dropping datasets in a controlled fashion if a back pressure signal is 

generated by the downstream modules. A front-end source emulator capable of generating the various data 

patterns that can act as a test bed to validate the functionality and performance of the Header Generator was 

also needed. Such a system was earlier designed and realized in VHDL. [2] 

While this process has been traditionally carried out using hardware description languages (HDLs), the 

possibility exists of using OpenCL to design a DAQ system. OpenCL has the potential to simplify the 

development cycle of the applications, and make it easier for physicists, who are more familiar with 

traditional software, to understand the system and make modifications in the future. This is challenging due 

to the fact that the OpenCL language is designed for Parallel Processing and not really targeted at real-time 

DAQ and there are major challenges in representing the cycle-accurate data acquisition and processing 

system in OpenCL. However, OpenCL for FPGAs may be applicable from a high level synthesis 

perspective. Achieving this will enable the transition of the entire FPGA design flow for High Energy 

Physics applications to OpenCL, rather than just the algorithm acceleration portion that involves parallel 

processing. 
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2. FPGAs in High Energy Physics 

FPGAs are used in HEP experimental setups for a variety of purposes. They are used initially for Data 

Acquisition to collate the streaming data coming off the front end electronics over multiple channels. Also 

there is a need for FPGAs in the low level trigger system where the acquired data need to be quickly 

processed to arrive at the trigger decisions. The custom nature of the solutions required and also the need to 

operate in high radiation environments make any other technology unsuitable for these purposes. ASICs are 

suitable only for high volume production and are unviable for these applications due to prohibitive costs. 

2.1. HDL based FPGA Design 

The custom circuitries needed to implement these systems are traditionally designed using Hardware 

Description Languages like VHDL/Verilog. Programming in VHDL/Verilog is done at the Register 

Transfer Level (RTL) abstraction. These designs are then synthesized into netlists that are then placed and 

routed for the specific FPGA device and finally a bitfile, used to program the FPGA is generated. 

VHDL/Verilog being niche languages used by FPGA/ASIC designers, knowledge of them is not common 

among physicists or even software engineers. The RTL abstraction is a very low level representation and 

hence it is also difficult to design and debug extremely large designs. Moreover implementing the necessary 

logic/function in HDL is not enough - one needs to manually create memory hierarchies and also instantiate 

communication cores and link them to the design to keep the system supplied with data.  All the control and 

glue logic needed to keep the design in synchronicity with other systems also need to be implemented. This 

just models the FPGA side of the system. In addition, the PC control software still needs to be implemented. 

However despite the shortcomings, it is nevertheless very flexible and versatile enough to implement 

anything from a custom processor, to a DAQ system or a co-processor/accelerator. 

2.2. OpenCL based acceleration on FPGA 

The Khronos Group, the maintainer of the OpenCL specification [3], defines it as an open standard for 

parallel programming of heterogeneous systems. It is the first open, royalty-free standard for cross-

platform, parallel programming of modern processors found in personal computers, servers and 

handheld/embedded devices. OpenCL has been in use for a while to take advantage of GPUs, DSPs and 

Manycore processors for parallelizable workloads. While FPGAs have always been capable of exploiting 

parallelism, their hardware based programming model makes taking advantage of them harder than using 

GPUs and other devices. That has now changed with the two major FPGA vendors supporting OpenCL-

based acceleration by means of SDKs. These reduce OpenCL kernels to custom circuits that are 

subsequently synthesized to netlist and a bitstream is generated. The real advantage of OpenCL-based 

acceleration on FPGA is that the user only needs to focus on describing the logic for the computation itself. 

All the additional control logic, the PCIe core for communication and data transfer to and from the PC and 

the necessary memory hierarchy plus the memory controllers, are automatically generated by the tool. For 

instance, the tasks of transferring data to the FPGA, executing the kernel, and then retrieving the results is 

reduced to three simple API calls as follows: 
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Copy Data Host → FPGA: clEnqueueWriteBuffer( ... ); 

Execute Kernel on FPGA:  clEnqueueTask( ..., my_kernel, ...); 

clEnqueueNDRangeKernel( ..., my_kernel, ...); 

Copy Data FPGA → Host: clEnqueueReadBuffer( ... ); 

 

This makes exploiting FPGAs for acceleration as easy as using GPUs. With the possibility of easily 

implementing or porting OpenCL applications to FPGA, exploiting FPGAs for acceleration has become as 

easy as using GPUs. While porting the code is only the first step, porting the performance is the real 

challenge. The following section looks at how the different architectures fare. 
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3. Algorithm Acceleration on FPGA with OpenCL: Hough 
Transformation 

One of the claimed advantages of OpenCL is portability of code. Hence, for this evaluation, an existing 

implementation of the Hough Transform code for a GPU was used [4]. The Hough transform is a method to 

identify patterns from points in 2D/3D space. Variations of this algorithm are used to identify particle tracks 

from detector data of various experiments at CERN. The version used with the VELO (Vertex Locator) 

Detector for identifying straight line tracks was used for this evaluation. The existing kernels were used 

unmodified for the initial tests and minimal changes were done to the host code to allow for precompiled 

binaries as Altera’s OpenCL compiler only supports offline compilation. Altera’s OpenCL compiler version 

14.1 was used. The code consisted of two kernels. The first was for a 2D Hough transform which is 

executed twice, for each of the XZ and YZ projections of the 3D particle hit data. The second was to find 

the overlap between the results of the two 2D transforms to compute 3D tracks. Along with the 

implementations for GPU and FPGA, one was also created for the Intel Xeon Phi MIC (Many Integrated 

Core) architecture and a Multi-core CPU. 

3.1. Comparison of unmodified kernels 

The runtime figures of the two kernels over 3 runs are provided in Table 1. The same is represented in the 

Figures 1 and 2 in logarithmic and normal scale respectively. These runtimes were obtained by profiling for 

the start and finish of each kernel instance. These numbers are reported based on the internal clocks of the 

devices and hence the resolution of these values could be different. Also the total runtime of the program 

(host code plus kernels) is not shown due to the difference in the host system configurations. This also 

avoids the error due to the difference in online compilation (GPU, Xeon Phi and CPU) and offline 

compilation (FPGA). Intel OpenCL compiler was used for the CPU and Xeon Phi. Nvidia’s and Altera’s 

compilers were used for the GPU and FPGA respectively. 

From figure 1 & 2, one can see that for kernel 1, the FPGA performs about 2.25 times faster than the GPU 

and about the same as Xeon Phi. Interestingly the CPU has the best runtime for kernel. This could be the 

result of the small dataset size and a high clock speed of the CPU. The runtime for kernel 2 on FPGA is 

abnormally high compared to other architectures, so the GPU and Xeon Phi are faster for kernel 2 by two 

orders of magnitude compared to the FPGA. The runtime for kernel 2 on FPGA goes out of bounds in 

normal scale and hence it is shown in red. 
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Figure 1. Run times of unmodified kernels in log scale 

 

 

Figure 2. Run times of unmodified kernels in normal scale 
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3.2. A little optimization 

A quick look at the kernel code revealed that there are 3 for loops in the kernel and them being executed 

serially was reason for the long runtime. So the compiler was provided with a loop unroll hint as follows: 

#pragma unroll 
for (int i = 0; i < size; i++){ 

 Line1[i] = In1[gid1*size + i]; 

 Line2[i] = In2[gid2*size + i]; 

} 

#pragma unroll 
for (int i = 0; i < size; i++){ 

 #pragma unroll 
 for (int j = 0; j < size; j++) { 

  if (Line1[i] != 0 && Line1[i] == Line2[j]){ 

   count++; 

  } 

 } 

} 

Here the “#pragma unroll” directive instructs the Altera OpenCL compiler to unroll the for loops fully i.e. 

each of the iteration of the for loop is executed in parallel, since there is no interloop dependency. With this 

optimization directive the runtimes of kernel 2 were profiled again and the results of which are presented in 

Table 2 and Figure 3. Now the FPGA runs the kernel 2 twice as fast as Xeon Phi and 4 times as fast as the 

GPU. 

 

Figure 3. Run times of loop unrolled kernel 2 with unmodified kernels 
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3.3. Performance/Watt and some concluding words 

While it might seem unfair to compare the numbers for FPGA with optimization directive with other 

architectures running vanilla kernels, it should be noted that the point of this paper is not to make a fool 

proof comparison of different architectures but to establish FPGA(with OpenCL) as an architecture that 

needs to be seriously considered. It should be possible to optimize the code for all the architectures to 

different extents and I’m sure we can obtain improved runtimes for GPU, Xeon Phi and the CPU too. In 

fact, it is possible that an optimized CPU version would beat the accelerators if overall run time of the entire 

algorithm for a single event is considered since it would save on costly data transfers between host and 

device memories. But for large number of events any of the accelerator should be better than the CPU is the 

kernels and their data transfers are pipelines, thereby hiding the data transfer latencies. (Such a comparison 

would require in depth understanding of all the architectures considered.) Similarly it would also be 

possible further improve performance for FPGA further as only one simple directive has been tried. For 

instance, there are also options to use OpenCL pipes or Altera Channels with FPGAs that would enable 

transfer of data between kernels without invoking costly memory access and transfers. This will reduce 

overall runtime on FPGAs further. There also exists further scope for extracting more parallelism from the 

Hough transform code, the lack of which could also be affecting the performance currently. This more or 

less establishes that FPGA perform as well as or better than other architectures. But even in the case where 

different architectures performs similarly or even when the raw performance of FPGA is lesser than other 

architectures, FPGAs still come out on top if one considers the power consumed, i.e. Performance/Watt. 

Figure 4 shows the Maximum power consumed by each of the device under comparison. While the actual 

power would be lesser depending on the workload, this is still indicative of how much more efficient the 

FPGA is compared to other architectures. Assuming identical raw performance, the FPGA has 8X higher 

Performance/Watt compared to the GPU and 11X compared to the Xeon Phi. The power figure of CPU is 

omitted in this comparison due to the fact that the different accelerators only run the kernels; the CPU on 

the other hand runs the kernels and host code on top of the Operating system and other overheads. A 

potential next step would be to measure the actual power consumption of the kernels on the different 

accelerators. 

 

Figure 4. Maximum power consumed and their process technologies 

3.4. Additional remarks 

Effort was also made to implement this algorithm on a Xilinx FPGA by compiling the OpenCL code with 

Xilinx’s SDAccel 2015.1.4 tool, but unfortunately, the tool could not load the generated kernels onto 

hardware due to a bug. Hence tests could not be performed on the actual hardware.  
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4. Implementing a DAQ system on FPGA with OpenCL 

We have established that it is very easy to use OpenCL with FPGAs and to achieve identical or better 

performance compared to other architectures, but FPGAs are capable of more than just acceleration. So the 

next question that came up was whether OpenCL can be used to implement other systems like DAQ. To 

evaluate the possibility of implementing a DAQ system using OpenCL, an existing design was taken up.  

The Adaptive Header Generator [1] is an existing module in DAQ flow for the LHCb experiment. The 

purpose of the Header Generator system is to packetize the streamed data by creating a meta-header by 

combining the header information of hundreds of small event datasets. The Source Emulator creates a 

pseudo data stream. It serves the dual purpose of being a synthesizable test bench for the Header Generator 

and at the same time can function as a standalone module that can be integrated into other systems if 

required. This is not a parallelizable problem. Therefore it is an ideal test case for exploring OpenCL for 

non acceleration applications on FPGAs. 

 

Figure 5. Complete data flow from random seed for source emulator to the generation of the 
modified data stream and the header 

The existing Header Generator and the Source Emulator modules were implemented in VHDL. Figure 1 

shows the data flow of the DAQ system with the major sub modules. The functionality of these modules 

was captured in OpenCL kernels and implemented using Altera’s OpenCL compiler. The following sections 

describe the challenges faced in implementing this and their solutions. 

4.1. Handling IO and moving data between kernels 

The very first task in DAQ is to clock the data into the FPGA. The OpenCL standard was initially created to 

exploit the parallelism of the many cores found in devices like GPUs and those devices are only capable of 

accelerating parallelizable workloads. Also, the original OpenCL spec does not have a provision for a 

generic I/O mechanism outside of communication with the Host CPU.  One other task is to communicate 

the data between various kernels. In the OpenCL specification, again keeping in mind devices like GPUs, 

the only way to move data was by means of global memory access. The latencies involved with memory 

access would be too high for DAQ applications with streaming inputs. To overcome these limitations and 

meet these requirements, channel extension as provided by Altera can be used. Channels are FIFO based 

structures that can be used to move data between: 
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 I/O → Kernel 

 Kernel → Kernel (bypassing the Global Memory) 

 Kernel → I/O 

Using channels, the movement of data signals such as Rand and Stream, as shown in figure 1, were 

modelled. The concept of channels is incorporated in the next OpenCL 2.0 specification as pipes. 

4.2. Bit level manipulation and non standard data width 

As is common with Data Acquisition systems, there was a need for bit level manipulation and variables 

with non-standard widths. There was a need to access a 16 bit ushort variable in chunks of 11 and 5 bits as 

well as whole to implement an addressing logic as shown in figure 2. 

 

Figure 6. Accessing a memory element in parts and in whole 

his type of memory access is not possible in devices like GPUs and has to be accomplished in an indirect 

manner with CPUs. However, this is trivially accomplished on an FPGA as follows: 

SIGNAL location : STD_LOGIC_VECTOR(15 DOWNTO 0) ; 

alias uByte_pos : STD_LOGIC_VECTOR(4 DOWNTO 0) is location (4 downto 0); 

alias nLines : STD_LOGIC_VECTOR(10 DOWNTO 0) is location(15 downto 5); 

This kind of packed representation can be accomplished by means of bit fields. This feature, although 

present in the C, is absent from the OpenCL specification. However Altera’s OpenCL compiler supports bit 

fields as it makes perfect sense on an FPGA. This can be implemented in OpenCL as follows: 

typedef union loc 

{ 

 Struct 

 { 

  uchar uByte_pos :5; 

  ushort nLines   :11; 

 }; 

 ushort location; 

}; 

This not only makes writing and understanding the code easier, but also results in efficient hardware on the 

FPGA. 
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4.3. Control Signals 

Control signals are integral to any Data Acquisition system. In our design from figure 1, apart from the data 

signals that we modelled as channels, these are the remaining signals: 

 Clock and Reset 

 Different Valid Signals (Strm_valid, Len_valid, Strm_fwd_valid) 

 Throttle/Feedback signals (slow/slow_n) 

4.3.1. Clock and Reset Signals. Altera’s OpenCL compiler internally takes care of the 

clocking and reset of the kernel logic as well as for the memory access and communication with the Host 

CPU. These are hidden from the user. 

4.3.2. Valid Signals. In the HDL implementation of the design, valid signals corresponding to the 

different data signals need to be explicitly created. However when the data signals are modeled as 

channels with the Altera’s OpenCL extension, the compiler automatically creates a valid and stall signal 

corresponding to each channel. Hence these are also hidden from the user. 

4.3.3. Throttle/Feedback signals. In DAQ systems dealing with streamed data, feedback 

signals are employed to convey congestion information from downstream to upstream modules. Using 

these signals, the upstream modules can stop or slow the data flow so as not to overflow the buffers. 

These signals are even more critical in systems such as the Header Generator where its own data source 

does not have any flow control but its data sink requires flow control. The ‘slow’ signal in figure 1 

serves this purpose and is generated by modules downstream of the Header Generator. When the slow 

signal is active, the logic in the Header Generator drops events from the data stream in a controlled 

fashion. The feedback signals are by definition asynchronous to the system and their relevance is 

instantaneous in nature. Unlike data signals where every single datum transmitted needs to be captured 

and in the same order, in the case of the throttle signal, only the current value is needed and it is critical 

that the current value is always available. There is no mechanism to model these signals in OpenCL. The 

usage of channels in this scenario was considered but since channels operate in a synchronous manner 

and the writes and reads to a channel always need to be in a 1:1 ratio, it is not suitable. Moreover, the 

internal flow control of the channels would interfere with the custom flow control of the system. Since 

the throttle signal cannot be implemented currently in OpenCL, this has become a road block in the 

attempt to realize a DAQ system on FPGA with OpenCL. 

4.4. Section Conclusion: DAQ Implementation with OpenCL 

To my knowledge, this is one of the first instances to explore using OpenCL for applications outside of 

acceleration workloads. Acceleration workload in this context will be something that is parallelizable to 

finish the computation faster. This is in contrast to a monolithic non-acceleration workload such as DAQ. It 

may have sub-modules that are pipelined, but beyond that there is little parallelization involved and nothing 

to be accelerated. While the current OpenCL specification and the Altera specific extensions do not support 
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this kind of usage, it is not impossible to add appropriate support. Allowing asynchronous channels and 

adding support for ‘VHDL signals’ or ‘Verilog wires’ as FPGA specific extensions to OpenCL will 

facilitate modelling of these kinds of requirements. Since the underlying hardware is an FPGA that supports 

these kinds of operations and also since the Altera compiler actually generates a Verilog representation of 

the system from the High Level OpenCL constructs, it should be straight forward to add these 

functionalities. Altera has been notified both of this inadequacy in their current compiler and its possible 

solution described above. It is also possible that there might be more features and functionalities required by 

DAQ applications that were not encountered in this test application. 

Since this is a novel attempt, the performance of the DAQ system is hard to predict. There are various 

factors that affect the prior estimation of performance of such as system. Since the coding is done in 

OpenCL and that is converted to Verilog and then synthesized for FPGA by Altera’s tools, the internal 

structures of the kernels are hidden from the user. There will also certainly be an overhead involved with 

the OpenCL-based design. Finally, unlike custom-designed memory interfaces, the use of an auto-generated 

memory hierarchy in OpenCL can introduce uncertainties in memory access. All of these can make it hard 

to estimate the performance. Nevertheless the ease of use and the ensuing massive gain in productivity this 

approach offers outweigh the limitations and warrant further investigation on these lines. 
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5. Conclusion 

An evaluation of using OpenCL with FPGA has been completed. An implementation of a Data Acquisition 

system was attempted along with an implementation of an algorithm for acceleration. The idea behind 

implementing a DAQ system was to explore the possibility of using OpenCL for more than just 

acceleration. Many of the design elements needed to realize a DAQ system in OpenCL already exist, mostly 

as FPGA vendor extensions. Some of these extensions are also going into subsequent versions of the 

OpenCL specification. However a small number of elements are also missing, preventing one from fully 

realizing a complete DAQ system today. Since these missing elements have simple feasible solutions, they 

could also be implemented if the FPGA tool vendors so desire. Hence it might soon be possible to 

implement a complete DAQ system on FPGA using OpenCL. It still remains to be seen how such a system 

would perform compared to a custom implementation in VHDL/Verilog, but there definitely exists a case 

for OpenCL in this application due to the massive productivity gain and ease of use it offers. Also, since 

this is a software-based development flow, this enables even non FPGA experts to design, debug and 

maintain the code. While this approach relies on vender specific extensions to a large extent, portability of 

the code is not a major concern as these kinds of designs cannot be realized on other devices, such as GPUs 

and other accelerators, anyway. 

As for using OpenCL to accelerate algorithms on FPGA, in the test case the FPGA performed better in one 

instance and much worse in the other. Further work is necessary to determine the exact reason. An 

optimized implementation for FPGA would be a truer measure of the performance but irrespective of 

whether the performance is higher or lower than other devices, one thing that cannot be denied is that 

OpenCL makes exploiting FPGAs for acceleration as easy as exploiting GPUs. That is a long way from the 

days of painstaking efforts to create a cycle accurate HDL design, functionally verifying it, debugging the 

design errors and fixing the timing violations to realize a working system. Even if FPGAs lag behind other 

devices in terms of raw performance figures, which are not always the case, they are usually still better 

when the metric of comparison is Performance/Watt. It has been shown that FPGAs can order of magnitude 

advantage in terms of Performance/Watt. Extracting more parallelism from the algorithm, creating an 

FPGA optimized implementation, investigating the huge drop in performance for some kernels and also 

accurate power profiling of the designs could be the direction of future work. 
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